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Abstract

Pattern selection and competition in certain near-integrable

systems is discussed. Thesr systems provide models for controlled

studies of low riim~nsionfll attractors in high (infinite) dimensional

systems, Four examples from dtimped, driven pendulum rings are

summarized in thl’ ordur of increasing spatial complexity of their

chaotic attractors. Thcsu cx~mplvs illustrate the use of numerical and

analytictil tcchniqms from sol,iton mi]thcmatics to study proprrtics of

chaotic att.rnctors. In piirtir:lilor, the connection of (unprrturhrd)

homoclinic stiltcs with in~tuhilitic~ of sputial ptittcrn~, wi tl:

intrr~ctiolls l)(~lw(l(’n p;lLt(’rus, :lfid ns ~’r)~%ihlc sourc(’s 01” Lcmporn] rh;los
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I. Introduction

Complex systems often exhibit rich spatial and temporal patterns,

which possess both coherent and chaotic features. This property is

found in many physical systems (water waves, plasmas, turbulent fluids,

laser light, solid state and electronic devices), as well as in numeri-

cal simulations of partial differential equations and cellular

1
automata. Analysis of such complicated systems is extremely limited;

thus , usually one is restricted to numerical or physical observations.

Although these compl~x systems have high (even infinite) dimen-

sional pha~e spaces, their chaotic attractors are often low dimensional.

(At least this low dimensionality seems to apply to the macroscopic

transport via collective structures, ) Recently theorists, using methods

from the mathematical theory of dynamical systems, have made consider-

able progress in discovering and understanding universal properties of

low dimensional systems, These theoretical developments have given———.—... .. . .. .

considerublc insight toward the interpretation of obsrrvat..ions of the

long timr h(’hilViOr of rornplcx Systems. However, a mathemtiticai theory

of ~hi]r)ti~. :ittril[:tors for iufinitc dimcnsiorral systems is still in its--.&———

inf’anvy,

Our own rercnt res[~orch has focused on model par-ti.al diffcront ia]

equations Whicl) dr(! far simpler than realistic physic~l systems, yet

compl icotcd rnou~h to possess low diW[):;iOniJl ilt(ra(’tor!i in on inlirlitv

dimrnsi, Ilill SLilt[’ S])ilCC!. Typicdl]y wc study orl(’ (1inrrlls ion:l I not] 1i rlf*ilr

Wov(’ r(lllat ions whi [’h ilr[’ rle:lrt)y “int(’~Yill)l (!” r(lll:lt iorls , ‘I’tl(’s{’ 1110(1(”I

proh Ivms pf’rwi t o dr~(;li 1{~(1(ilt t im(’s ~*vr*ri ;irl:llyti[’i]] ) stii(ly of” Sl)(’[’i f“ir

pro])(irt i(~s of (Sll:lot i[’ ilLL ro(’tors in ii hi~t! (finwlls if~rl;l1 sysl(*nl, 1rl
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the chaotic attractors and the mechanisms which cause patterr, selection,

competition between patterns, and the generation of chaos. Some of

these features, which can be understood in detail for the model

problems, are rather general and will extend to more realistic systems

where such detailed investigations are impossible at present -- nor can

they be anticipated in the near ftiture,

In this article, we will briefly describe several representative

examples, in order of the increasing spatial complexity of their attrac-

tors, which illustrate the above philosophy. The reader should consult

the references for further details, All of the examples which we

discuss here are perturbed sine-Gordon equations, which provide elegant

model problems,

11. Homo&eneously AC Drive~, D~mped Pendulum Ring.—

A concrete example is the damped, ac-driven sine-Gordon equation

under periodic boundary conditions:

o - $Xx +~in@= c[-m$t + r sin(wt)l ,
tt

(2.1)

$(x +1., t) =f)(x,t) , [Z. lt)c)

$[x)L = 0) ‘@in(x) ,

$L(w = 0) = Vin(x) .

(2,1ic)

Herr O f E(( 1, and the Coi]trol p~romt!ters iiru (Y (Lhc Strrngth of Lhr

disfiipilLion), 1’ (the iimpliLu(l(l o!’ lII(! iIC (Iri, v(’r), W (Lh(! j’lTqll(”ll(”Y of’

lh(’ i](- driv[’r), 1, (thr S]lilt i:ll p!riml) , illl(l l.ll(- irliti;ll [Iillil ($i,,, Vi,,).

‘l% i S (’(lllil t i 011 mo(l(’ I S :1 (-l Iii i II 0!” Il:irnh)[li cil 1 I Y (-01111I (*(I !10111 ill(’ilr I)rti(lu] n ,

AI]I’011-A
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with periodic boundary conditions describing a ring configuration. Note

that both the dissipation and driving are spatially homogeneous.

Historically this system with ~ spatial structure (i.e., the single

pendulum) has provided

standing of temporal

However, these studies

spatial structure

of the space-time

In numerical

which

a useful model to direct and test onets under-

2,3
chaos in deterministic dynamical systems.

of the single pendulum neglect all effects of

9 when present, can completely alter the nature

attractor.

4,5 .
experiments with weak homogeneous perturbations and

single humped initial data, the fundamental phenomenon is

between a spatially localized excitation (a “breather”)

driver. (It should be mentioned that the driving frequency

a resonance

and the ac

w is chosen

less than unity in order to resonate with a spatially localized breather

whose natural frequency ~r satisfies 0 c ~r < 1. If one drives at an

U>l, one resonates with extended phonons whose natural frequencies

)s~tisfy 1 < w < mm
ph

Above a low threshold

initialized excitation adjusts, persist:;, and

driver. As the systcm is further stressed by

driving strength r, the

locks periodically to the

increasing r, this locked

stiite looses stability and more complicated spatial strurturcs emerge,

As pnrametcr valurs are varied, the attractors can be temporally

periodic, i~uasi-perioflic, subharmonically

intcrmittiltlcy) . I)i?pcndiug principally on

driver, Lh(! rtl:lotic

kink-antikillk” or

distitlct typvs of

rodi(llion) rl;]ssi!”y

dyntirnics is controlled

lock~d, or ~hilotic (with

the’ !rcquency w of Lhr ac

I)y rith(’r (i) “l)r[!uthcr <-)

AIWOII-A
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The reader will notice that the terms “kink, ” “breather, ” and

“anharnmnic radiation” have noL been defined. In general such defini-

tions are not precise, involving approximate techniques such as collec-

tive coordinate methods. It is especially difficult to distinguish

between breathers and radiation. A ❑ajor advantage in working near an

integrable soliton equation is that nonlinear spectral transforms exist

which provide a precise definition and classification of these distinct

nonlinear modes. A detailed description of the application of nonlinear

spectral methods to chaotic attractors of system (2.1) may be found in

Refs. (6,7), These nonlinear spectral methods have allowed us to

demonstrate that a chaotic attractor can be comprised of a small number

of nonlinear modes which undergo collision, annihilation, nucleation,

decay, and transition between coherent and exttnded states. In addition

these spectral methods have identified the presence of infinite period

homoclinic orbits which are associated with transitions between the

three types of nonlinear modes. We bei,ieve that these homoclinic

states, although lCSS familiar than the pendulum separatrix, play as

fundamental a role in this chaotic pendulum chain. On the one hand,

these homoclinic states are related to instabilities which generate more

complicated spatial patterns; on the other hand, the infinite period

states act as sollrces of extreme sensitivity which can produce chaos.

main resU]L of the nonlinctir spectral method ls to cstoblish Ilutncrit-ill

the prrsenrc

attractor.

We drsrr

thiln, alifl not

of frc.;ul!nL homoc]inic crossings ulong the ~])i]OL

A

Y

c

hc two (’;l:l (’s. First, wu I“ix Lilt’ [Irivi,ng I“roilu(’rlcy ur 1(’s~

4,5,tinedr, unity. !or ~“x:lmplr, :It w = (),6 illld I:(Y= ().2.

AllPO1 l-A
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Then the bifurcation sequence as a function of increasing stress

parameter r is given symbolically by

In these symbols the top entry of each ordered pair describes the

spatial structure of the attractor, while the second entry indicates its

temporal behavior,

Such bifurcation sequences may be understood as follows: As a

function of increasing stress, the flat attractor becomes unstable to a

kl(= 2~/L) Fourier excitation which saturates into an attractor with one

localized breather per spatial period. With further stress, this single

breather develops a k2(= 4n/L) instability which may saturate into two

breathers per period or one breather plus a k2 enharmonic phonon,—

depending principally on dissipation strengt”l. (The first situation of

period halvi~~g into two breathers occurs at larger dissipation,) When

the attractor contains a k2 anharmcnic phonon, the temporal behavior may

be quasi-periodic, subharmonically locked, or chaotic depending upon

parameter values. Similar distinctions apply as the system is further

stressed ;Ind four spaLial excitations emerge (arising from a kh(= 8K/L)

instability),

111 this low frequency (UI ; 0,6) case, th[’ (:htiotic rcgim[!s arp

characturizcd by “brrathcr” to “kink-nntikink” Transitions sill(sp t,hu

breath~rs which resoIlilt.(! with a IOW frrqllcncy ac [Irivcll hilve Iargc

amplitudv (- 2n) an(l thus iirr near t.hv k~nk-:lntikil~k (hrf!sbold.

AllPO1l-A
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Figure 1 shows how, in the chaotic regime, the basic coherent structures

persist, but that their phase-locking relative to each other has been

(chaotically) broken so that the structure fails to repeat by a small

amount after each driver period. We can decompose the field at each

instant of time into radiation and either two “breathers” or two “kinks”

and two “antikinks”. Furthermore, chaotic evolution of <$(t)> (the

spatial average of ~) through multiples of 2n does not take place via

single particle dynamics but rather through the slow diffusion of the

kinks (antikinks). Our nonlinear spectral analysis indeed confirms the

presence of a small number of localized excitations in the chaotic

6
attractor. This small number of dominating localized modes suggests

that the chaos may be governed by a low dimensional strange attractor.

We have checked that the correlation dimension 6’8 is indeed low (-3).

In fact, the chaos observed in this experiment is intermittent between

the periodic locked states [Figure (la) and its period-4 analogue] and

the irregularly evolving unlocked states [Figure (lb)]. This inter-

mittence is reflected in the time series for the spatial averages of u

and u t, shown in Figure 2.

We close our discussion of this experiment by emphasizing that, at

these low driving frequencies, breather to kink-antikink breakup dom-

inates the chaotic attractor. A homoclinic state in the unperturbed

system is associated with this transition. This infinite period state

admits a familiar physical interpretation and provides a natural sourc~?

of sensitivity. In Lhe next experiment, we describe a nonl,ineur

Schrodingcr (NIX) regime which is domi[l;lt(!d IJY Lhc hr~~lthcr to rildintion

transition, whos(! hornoclinic stntvs arc far lt’:is filmiliar, ‘“o but

~imi I:lrly important i]s potrllt ial sourcf~s of NI,S rh;los,

ABPOII-A
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Next, we consider the second case with a higher driving frequency w

near, but still less than, unity. 7,11 For example, consider w = 0.87

and EU = 0.04. (One difficulty with the experiments at smalleru (e.g.,

w ~ .6) is that the interesting bifurcations occur at rather large

values of the stress parameter (ET ~ 1.0). These perturbations are

large enough that analysis based on the integrable sine-Gordon theory is

not appropriate. When w is raised to w ~ .9, the interesting bifur-

cation occur at much small values of the stress parameter making

analysis based on the integrable theory more appropriate. The choice

O a w z 1 places us in the “nonlinear Schrodinger (NLS) regime”. That

is, when UJ? 1, one can use perturbation ❑ethods to approximate a class

of equations, (which includes the sine-Gordon equation (2. 1)) by an NLS

equation:

u(x, t) = ~6&[A(ct,~ex)eit + c.c. ] .

Here the complex amplitude A(T,X) satisfies

-2i~ + ~ + 3AA*A =
iaA + ~ce-i(l-w)T

)

where rc =

particular

physical problems. 12-18

r/2J6& . Thus, because of the generic nature of NLS, this

experiment at w ~ 1 actually applies to a wide class of

At these paLameLer values (uJ = 0.87, &a = .04) numerical experiments

on the initial value problem (2.1) reveal a beautiful route to chaos

with the following features:

(i) tem~rally - one frequency + two frequencies + chuos;— -—...

(ii ) g~at ia~ly - one loca J.izcil “hump” + two localized “humps”;

ABPOI1-A
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(iii) synmretry changes and pattern competition;

(iv) low dimensional, yet chaotic, attractors;

(v) temporal intermittence, accompanied by spatial symnetry

changes.

All of this action occurs at

(cr?O.12); hence, even the

small values of

chaotic system

the bifurcation parameter

is, in some sense, near-

integrable. As the stress

according to the following

parameter er increases, the attractor changes

symbolic sequence:

(~~odil + (’~~~~ori) ‘(~~~~~~~~~

+ (’::::on) ‘(:::;:::) + (2::::0:).

We briefly comment on these attractors. Their space-time behavior

is depicted in Figure 3. For small driving amplitudes (0.0 < cr < 0.058),

the periodic spatial structure of the initial conditions decays as a

transient, and the attractor is an x-independent flat state with no

spatial structure. This state is periodic in time with the period of

the ac driver. As this flat state is further stressed (by increasing

cr), it loses stability and the new attractor which emerges has the

spatial structure of one breather-like hump per spatial period riding

over a flat background. Its temporal behavior remains periodic at the

driving frequency. As er is still further increased, this state of onc

hump per period loses its stability to a new ilttractor which has two

humps per spati;ll period (one being localized in spuce and the second

with the character of k = 2, extcndrd, ~nharmonic radiation), and two

temporal Frequcnrirs (one at thr drivin~ frcqurncy w ❑ 0.87, and Lhc

ABPO1l-A
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second at much lower frequency). Temporally, the state can be either

quasi-periodic or subharmonically locked to the driver. With further

increase of Cr, the attractor returns to the (lEx,P) state, and then

back to (2Ex,QP) (with, again, one localized and one extended hump). We

have not ❑easured the structure of such “windows” in detail. As &r

increases furthex, the two humps per period “dance” irregularly, rather

than quasi-periodically, and both are localized.

With the stress parameter &r fixed well within the chaotic region,

the spatial structure of this chaotic attractor contains two humps per

period, just as the ❑ilder (2Ex,QP) attractor. The difference between

these two spatial structures is as follows: In the quasi-periodic case

(2Ex,QP), onc of the humps is rather extended; in the chaotic case

(2Ex, C), both humps are localized and the state is almost spatially

period halved. These two localized humps dance, decay into radiation,

reform through radiation, focus and grow back into localized states,

develop relative center of mass motion, collide, and generally interact

chaotically.

Finally, we describe the attractor at CT values just above the

chaotic threshold. Here the attractor is temporally intermittent. The

time series for the energy <H> = Jdx[+$t + +$: + 1-cos$] and the average

displacement <$> = Jdx$ are depicted in Figure 3 for &r= .1055. Note

the long, liuearly growing “laminar” regions separated by chaotic

bursts. In Lhese laminar regions the attractor is the same as the

quasi-periodic attractor at slightly lower values of cr. It hos two

humps uer period, one louulized iln(l the sccorlc! k = 2 anh:lrrnonic radia-

tion. Temporally, it ilCtS quasipcriodiudlly. As the k = 2 rodiotion

grows find focus(’s into H more 10C:11izrd hump, Lhc omplitudr of the time

A13P011-A
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series (1’igure 4) grows linearly; finally the time series “bursts”. In

this region of time, the attractor at &l_ = .1055 is very similar to the

chaotic attractor at higher cr values which was described in the pre-

ceding paragraph. It contains two localized hwnps which dance, decay,

and interact chaotically. As &l_ is increased from ,1055, the percentage

of time the attractor resides in the quasi-periodic “laminar” regions

decreases, as is to be expected for intermittence.

We have claimed that the temporal bifurcation sequence is

P+QP+C. In orclcr to deduce this, we tested the numerical data with

standard diagnostics of dynamical systems Lhcory (phase planes, Poincare

sections, temporal power specLra , leoding Lyapunov exponent, and

correlational dimension). These tests a re described in rlctail

7,11
elsek:here. Here we restrict ourselves to the phase planes of

Figure 5, and the power spectr~ of Figure 6,

W(’ note: (i) All diagnosLlcs ~re consist(’nt wiLll L]le above

sccrlario. (ii) Tile correlation dlmensiuu ctla[lgf’s with int’r(’;]sing L1- as

1. )2. + 3,5 ~4,3, ‘i%! dimc!llsir)ll of” 3.5 occurs aL G[”’ = ,10S5, wll(!rr!

the attr:]rLor is inLcrmi LLrllL, an(l it c;ln Ijc inL~’r])ruLc(] as :1 “wri~}rlr{]

rrvcragr’t of 2 ant] 4. ’J, ‘1’11[’risr’ [rem 2 ~ 3,5 O[(.lll -:; ril])i,lly, IJ(ILW(I(II1

~r=. 1(35 ;111(1L1’ = ,0175. (iii) ‘1’111’j}owf’r sj)(I[’LI-Ll l)]oLs, lJiR[];(. 6, SIIOW

Lho L the l,lminar rf’gir~n of LIIII i[lt(’rml I l[iflt ;iLLr:l(’tor illfl(’(’~1 ;I(ls :I:; i j

iL wrrc ~lll:l:;i-]1(’).](~~li~’ in Lim!’,

NOIII ill(’i]t
?,11

!;l)(’,’L l’il I 111(’; I:; II I’(JIII(JIII :; :;IIOW 111:11 (JIIIy ;I lIIW (.’1 or 4)-..

[Ir)ll] i[i(,:lr lllI)(lfIS ;11’(’ ;Il)l)l’(’(’ i:li)]y f’x(’i[f ’(i - (’V(III WII(III tiI(, :ILt I”;I([OI” iS

(111101 i(’, ‘1’11(’ Illllllllf ’t’ 01 !Il)l)l’(’l ii Il)ly (’:<(i L( ’(1 IIII)(lt I:; I 11(’t’I’:l:; (l:; with 141’)

(.ll;lllKill~ Wll(’11 (Ilrl ,11[ )’:1(’1(1I (’n Jll}\ f’!; I(J I(lttlill tlIrI ;I~(III:I(V ()[ 1)1111SIII(l~:

AI]I)O II-A
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(F, p): 1 Mode - kO

(lEX,P): 2 Hoden - kO; bl

(2Ex,QP): 3Modeu - kO, k2,b1

(2EX,C): 3-4 Hodes -

In this list, kO otands for flat, x independent radiation, k2 represents

enharmonic extended radiation similar to cos(29# x), ●nd bl denotes one

localized “breather” per period. In the case of the chaotic attractor

we do not list the type of nonlinear ❑odes because those which #re

presen~ change with time; at Eome times (k0,k2,b1,b1) are present, while

at other times (k0,k1,k2,b1], etc. [Actual ly, ●ven in the quaoiperlodic

attractor, the excitation changea between ● localized breather bl ●nd

extended enharmonic kl radiation.) Thuu, ●t ● fixed value of the stress

Cr, the chaotic attractor consistti in a few nonlinear modes which change

their type ns iI function of the, These type chnnges conatitutc

intcrarllon~ mId tr;lnsition~ bctwrcn rndiution and localized Mputial

Utillcti.

llprng~ljIIiC orhit~ find hc.moclinlc crostiin~~: The Kpdliully. . .. . .. —. .- .. . .. -- ..-. .. . .—.- .—. .
9,10

prrlodic, inlrgrnhlu H inc-(; ordon rqutit 1 WI tln~ homorlinlc ei.l!itH

acparntln~ rudlntion molh’~ from Iordliwd mod(!~. III thlti NLS rr~lm[’,

the ❑out importunt hwnorlinic Hltitu iH Lh:lt Wlllcll HvpilrnlrH I.tw I)rc’illtlcr

i’rom illl nnIIiIrmol~ I r k, l~IIWmn,
10,11

WtS h{ivr UN(!II Lhr nonliuwir ~pr(mlr:ll

tr;inHl”orm to t’hr~lk dlrrrlly tlw prrH(’nrv u!’ lIIP*C homol’llni~i l’rw~ill~ti

tilong thl:; (-lIiIOt i(” ;illrnt’lor. AH [IN* NyHIVm i~ :;111’[ i{’1[’nlly HIIVSH:IVIIlo

(1(’(’I’HH -ilhvr I;lrgr ;Implitudr illlil:ll-llf’l”i(~lll(. 01’ (’11111}11{’ ;Ittl”ili’tt)r!l,

I Ilt’fll’ numrri~.ill m~’:l:l!lrt’mwl~l 111’1(’(’l I I’1’qlll’111 li[~mot’ 1 i III [’ 1’IWI{H iilg:; o!”

‘1
● * h, lyp”, wllii”ll wf’rf’ ,jIII;t Ill I;i.llII:lf*d.

Al{l’(1 I I -,1
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Thus, homoclinic crossings of kl ~ bl type are present, and these

are potential sources of chaos in the NLS regime. While the measurement
bJ

of such kl * bl states is straight forward .. $ith nonlinear spectral

projections, it is quite inaccessible by standard data analysis such as

spatial and temporal profiles, time series diagnostics, or linear

spectral transforms.

111, DC Driven, Damped Pendulum Ring

One might imagine that a homogeneously dc driven, damped ring of

pendula would exhibit little spatial structure, However, this perturba-

tion actually yielas a very rich variety of space-time patterns which

illustrate a number of important general phenomena including transverse

instabilities on moving interfaces and spatial competition among

nonlinear modes.

The model problrrn [s ati i I] ~(llii]tion (2.1), except that we replace

“l” Hin Lut” wiLh a (IC driver “1” “, Again, the most interesting regimed c

is 011(! o 1“ ~mall disslpal.io[l (CU ~ 1) where t.here is a distinctive

hy~tcrr~~~, Ntimrly ati Ll”(,c is increusecl from O, there is no mean

rotation (<@t>) until l:l-(~c = 1, whrrr thr ]](l[ldulil begin to roLdtu homo-

gcncou~ly in HIhI(”(~ dn(l wiltl ;III o~ci Il;llory tirnr drpcndcncc tit.IouL <$/.

As Ll”,l(, is How (Ir(’rr:]:;(’(1, il flllitr viIIIi(! 01 ‘.$ ~ p(sr~i~ts for ~r < 1,t (Ir

il(’(’ottlpilll i[t{l t)y tllr 14pollt; )ll(*ollt!” :11)])( ’ilrilll(”(’ 01’ Li mr (Irprll(l(’llt sp;lLinl

pnLLurllfi, ‘1’11(’ hy!+Lrrt’si!; ~liii~rilm is otm~illliz(~(l into “%trl)s” (s(*(*

Figllr~’ 7,), I’il(’tl () [ wtli~’11

Htl”ll(”tlllm (’}. , ‘I’h( ’tit’ m~ly IMI

:+[;lll{lill~ W;IVI’I; ) 1}1’ I l’;lllVI’)”:lly

AIIIIOI I-A
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Linear stability analysis of the x-independent rotating state can

be used to predict the periodicity of the emerging structures on the

high steps very satisfactorily.
19 These structures saturate in the

nonlinear sine-Gordon potential into breather wave trains, in that their

amplitudes and widths have breather characteristics. These nonlinear

structures compete for transverse space. This competition is resolved

in two distinct ways: (1) amplitude delocking of the breather wavetrain

producing breathers of difirzcnt sizes (see Figure 8 ); or (2) breather

break-up into kink-antikink pairs. The latter occurs on the lower steps

where the “washboard frequency is smaller; and hence, the resonant

breathers have large amplitudes and thus easily break into kink-antikink

pairs.

Clearly there are a large variety of sources of low dimensional

chaos in this situation. Hathcmatically, hcmoclinic crossings, such as

those discusticd in section 2, are certainly pres~nt. Physically chaos

may be induced either through irrcgu]ar jumping between steps or Lhrough

trantiitions Lctwccn patterns on the sumc step.

Iv, Inhomo~t!n(!ous~ AC llrivrn—— .— .—.. -. . . ..– . . . . . . . . . ..}...D\llllPfA! YsF?\l~l llm_E~[~g~g

In the previous ~ccl.ions wr fom;d: (i) LhiIl an ac drl.v{!r could

intrrhc@ a ~h~ril~Ll*rl~Llc Itnglh scalr ‘- thr widLh Of th~ HilLuriiL~t!

(brcaLhcrJ mod{!~ whi~”h r(*~OIli]L(? Lrrnpornlly wlLh Lhr drivt!r; mId

(ii) Lliilt romprtiL ion h4!LwPf!Il sp;lli:ll lmLLt’rnH ITHIII1:I wh[’n LhiN lrIIgLh

u p[!r hump. [II Lhi:)

LIIIH l’omprt il inn hy

:; I’lrh I 1’VPII with ;I

sp:lLi:l]ly prrin(li~. :Ir drivin~ lr’rm ol tht’ lOrIII 1’ :Iill(ut-tlx), A~iiiil, tll~’

AI]POII-A
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frequency UJ controls the width of the saturated mode. However, now the

driver introduces an additional spatial scale, 2n/q. In effect, this

drivel resonates with the localized breathers of frequency w and with

phonons of wave number q. If the two length scales are near

conmnensurate, a strong temporally periodic locking of a breather wave

train of spatial periodicity 2n/q occurs,

strengths (See Figure 9a). however, if

inconsnensurate, even very small driving

even for very high driving

the two length scales are

strengths produce complex

space-time patterns (see Figure 9h). In this manner we can begin to

study the Lemporal evolutio~ of complicated (chaotic?) spatial patterns.

v. Conclusions

In this article we hilve drscribed several examples of coherence

chaos in near integrable systems. SLch models are simple enough

and

to

allow carcrul, controlled studies of low dimensional chaos in a high

dimcnsionol sctLing. In particular, the spatial pallrrns of the

attractor are closely rclul.cd to ~olution~ of the nearby integrable

system, and a nonlinuar spe(’tral transfr-m can bc used to qunnlify

proprrtius of thcsr sp:ltial titructurcwm In some insLanccs such mcatiurr-

mrnts Mhow thnt the i]LLrii~Lt)r cull h! r(!prt?uf!rlh!d by il Small numbl?r of

nonlinoar modus; howcwvr, Lhusr modr?s must ronlinul[y chdngc Lhrir typr

fill Lhu philS(! poinL l!VO]V(’S ill[JIl~

sprrl ril I MI’il SUlmlWM’nLS [’&lilllli Sh

itllt’rilrt.imlti on Lhr (?hii[)L i (-

AI{I’011-A
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complicated spatial patterns, and they act as sources of sensitivity

which can produce temporal chaos. A main result of the nonlinear

spectral measurements of these chaotic attractors is to establish

numerically the presence of frequent homoclinic crossings.

Of course, systems near soliton equations must have special

properties. Nevertheless, the discovery and verification of the

behavior of their chaotic attractors is much easier than in general

situations. Consider, as an example, the detailed information which we

described in this article about homoclinic crossings in the perturbed

sine-Gordon equation. Given the importance of homoclinic crossings in

the near integrable situation, we can now begin to ask about the

possibility of homorlinic states separating distinct spatial patterns in

more general settings,

For the future, it remains to be seen which of the chaotic

phenomena identified in near soliton systems will persist in a more

general frumuwork. [n the nvdr integrable Eramcwork, wc arc-continuing

to dcvel.op ~n ani]lytical rf.!duced desct”iption of ~ttr~ctors that

illcorporntes the ccleva,,t Smilll subset of interacting nonlincnr rnodcs,.—- .-

as well ns the dyn;lmicul fr:lturcs of homoclinic orbits.

AIWOII-A
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Figure Captions

Fig. 1 Space-time evolutions of @(x,t) for the SC system through two

driving periods for Ea = 0.2, u = 0.6, with periodic boundary

conditions, and driving strengths (a) cr = 0.8, which results in

periodic time evolutlon; (b) cr - 1.0, which results in chaotic

kink-antlkink motions (nearly repeating every driv..ng period).

Fig. 2 Spatial average <$>(t) and phase-plane for the ctaotic regime at

cI’ - 1.0 (Fig. lb), showing intermittence: lamlnar regimes are

time-periodic and spatially locked 2-breather (Fig. la).

Fig. 3. Space-time profiles on the attractor: (a) ~r - 0.050 (flat in

space, periodic in time): (b) ~r ■ 0.105 (quasi-periodic);

(~) ~r . 0.110 (chaotic). Note the second hump centcrcd at

x = ?12 in the quasi-periodic case. Note also the chan~m in

sptitlnl symmetry in the chaotic case.

Fig. 4. The energy, H, and mean valuo of the waveform, <o>, as a function

of tlmc for c r = .10S5 (chaotic). Notn the lonu Rrowing laminar

region f’or 11,300 < t < 13,700 and the chaotic ri%zlons which bound

it.

; (1)) 0.10;? ((ill:lsl-

O.IUJ (qu;lnl -p(lrlodlo),



Fig. 6. a) The power spectra at selected values of cl’.

b) Temporal power spectra for selected time intervals tn the

chaotic regime.

Fig. 7. A sunnary of numerical results. The arrows indicate the direction

in which the driving,
‘dc ‘

was adiabatically chanued, The x’s .

on the periodic steps (labeled P-N) denote where the periodic

symmetry breaks to another P-N state (see Fig. 8) when ‘dc ‘s

increased, :Id the o’s indicate where the symmetry is regained

as
‘dc

ia decreased. Notice that for 0.15 ~ I’dc~ 0.18 on the

3K-3K step, the spatial pattern is period!c. The norhenclaturc

reflects an annular Josephson Junction context for definiteness.

(See Pagano et al, those proceedinfls, for the effect of the @xxt

dissipation.)

Flfl. B. Two uxamplcs of coexisting attractors on the same step: (a)

periodic 6 (P-6) St3ndlHg breather train whose lengtils compete

with higher drlvin~, ylf?ldinR the nmplitude delocking illustrated;

(b) the P-4 stattc may undergo kink-nntlkink breakup to give the

4K + 4~ sta:r! shown, bfhosn kinks and antlkinks movo transvcrncly.

On euch of’ thr? UI axes, $ Is glvon modulo ?n.



Fig. 9. Snapshots of @ and @t, and power spectra, for spatially-

dependent driving 1’ sin (wt-kx), of a sine-Gordon ring with

L ■ 24, cam 0.1 anaw=O.9: (a) 2m/k = 6, ET = 1.1 and (b) 2n/k

= 24, CI’ = 0.5. In case (a), the resonant b~eather length scale

is z2w/k and locked, time-periodic resgonse occ’rs even with large

driving stren~ths. In case (b), the two length scales are very

different and a low-dimensional chaotic, gpatially-irreuular

attractor 1s found even at small driving strengths.
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